
MECB 2011 Overview Outline

- Introduction to National Codes
- MNECB bridge to NECB 2011
- 3. Part 5 HVAC Comparison
- 4. Part 5 HVAC Trade-off Path
- 5. Part 6 Service Water Heating Comparison
- 6. Comparison to ASHRAE 90.1 2010
- 7. Future Sensing for Energy Codes
- 8. Challenges of Energy Code Development
- Questions

Introduction

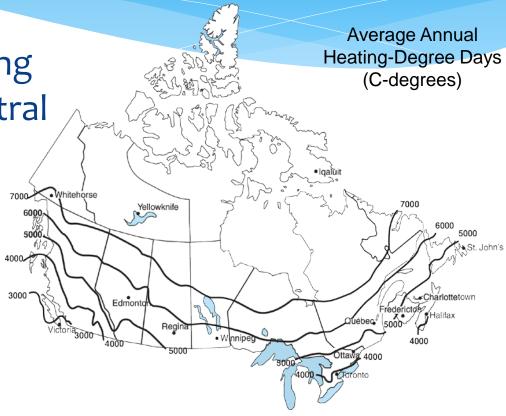
- * Model Code developed by Canadian Commission on Building and Fire Codes
- * NECB must be adopted by provincial/territorial authorities to become law

MNECB 1997 – use

- * Referenced in Ontario Building Code
- * Used in voluntary and incentive programs
 - * Commercial Buildings Incentive Program
 - * Utility and other programs
 - * LEED®

MNECB 1997 – why low adoption rate?

- * Energy/economics code
 - * Requirements and exemptions based on
 - * Principal energy source
 - * "Administrative region"
 - * Climatic criteria
 - * Energy distributor
 - * Outdated very quickly
 - * "Energy budget" code



NECB 2011 – approach

* Energy used by building

→ energy source neutral

* Based on climatic zone – heating degree-days (HDD)

NECB 2011 – approach

- * Silent on renewable, waste and site-generated energy
 - * Wide variety of technology
 - * No barriers placed for their use
 - * Reference standards for use, not necessarily efficiency
 - * Silent on most process loads
 - * Except pools and ice surfaces

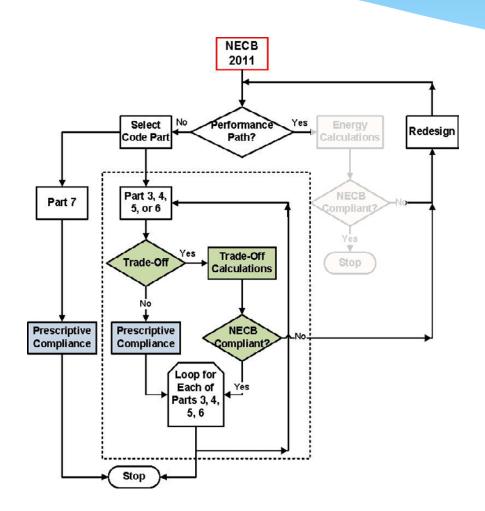
MNECB 1997 and NECB 2011

- * No differentiation based on occupancy
- * Same structure
 - * Part 3: Building Envelope
 - * Part 4: Lighting
 - * Part 5: Heating, Ventilating and Air-Conditioning Systems
 - * Part 6: Service Water Heating Systems
 - * Part 7: Electrical Power Systems and Motors
 - * Part 8: Performance Path

Compliance Paths

MNECB 1997

- * Simple prescriptive
- Building envelope trade-off
 - * Simple
 - * Computer-assisted


- Performance compliance
 - Whole-building modeling
 - engineering solution

NECB 2011

- Simple prescriptive
- Building envelope trade-off
 - Simple
 - Detailed
- Lighting, HVAC, service water trade-off
- Performance compliance
 - Whole-building modeling engineering solution

MECB 2013 compliance paths

- * Mix and match simple prescriptive and trade-off paths
- Use trade-off within same Part only

Prescriptive requirements

- Heating equipment
- Ventilating equipment
- Air-conditioning equipment
- HVAC control systems
- Piping and ducts

Trade-off Path

- System Approach

* Air Distribution Systems

MNECB 1997	MECB 2013	Current Practice
Ability to balance	Ability to balance	Yes
SMACNA 1985	Duct Sealing to SMACNA Standards	Mixed results (duct tape)
Exemptions	Exhaust – Return ducts in conditioned spaces	Yes

2015 will be tighter "classes" based upon 2012 standards

* Duct and Plenum Insulation

MNECB 1997	MECB 2013	Current Practice
Yes	Thermal insulation requirements	No*
Yes	Systems in dwelling units	Yes
Yes	Ductwork outside envelope	No

^{*}Air conditioning for dew point

* Cooling with Outdoor Air

MNECB 1997	MECB 2013	Current Practice
Yes	Use O.A. for cooling	For the most part
	with mechanical A.C.	(Enabling Economizers)
Yes	>3000 CFM	Yes
	>5.5 Tons Cooling	
Yes	Capacity Modulation	Yes

* Fan Systems

MNECB 1997	MECB 2013	Current Practice
Yes	Constant volume 1.6 W per L/s (0.75 W per cfm)	?
Yes	Variable Air Volume 2.65 W per L/s (1.25 W per cfm)	?
Yes	≤ 55% design W at 50% design air flow when > 7.5 kW and < 25 kW	

ASHRAE 90.1 2010 very similar

* Dampers

MNECB 1997	MECB 2013	Current Practice
Yes	> 12" X 10" (0.08 m3)	Varies
	Motorized dampers	
Yes	< 12" X 10" Manual or	Varies
	Back-draft dampers	
Outside Air Damper	<3 CFM per sq ft at 1"	Available
leakage	W.C.	

* Piping and Insulation

MNECB 1997	MECB 2013	Current Practice
Yes	Ability to Balance	Somewhat
Yes	Thermal conductivity requirements based upon pipe size and temperature difference	Somewhat*
Yes	Protection of insulation	Limited

* Pumping System Design

MNECB 1997	MECB 2013	Current Practice
Yes	HVAC Pumping Variable Flow ≤50%	Still Best Practice
Yes	Exemptions for Boiler and Chiller minimums	

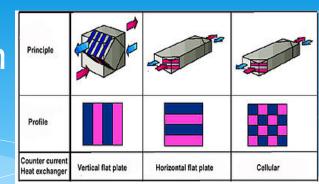
* Temperature Controls

MNECB 1997	MECB 2013	Current Practice
Yes	Thermostat locations	Need common sense
Yes	Controllability and accuracy	Standard through CSA
Yes	Heat Pump (no supplemental heating if load covered by HP)	Not usually commissioned

* Space Temperature Controls

MNECB 1997	MECB 2013	Current Practice
Yes	Heating – Cooling Zones separately controlled	Yes
Yes	De-coupling allowed	Not sure*
No	Vestibule Heating < 15°C	No

^{*}Simultaneous heating and cooling


* Temperature Controls

MNECB 1997	MECB 2013	Current Practice
Yes	Controls to adjust	Best Practice Only
	Leaving Air Temperature	
Yes	Do not: heat previously	
	cooled air, cool	
	previously heated air	
Yes	Exemption = Humidity	
	Control	

* Control of Space Temperature by Reheating (clg)

MNECB 1997	MECB 2013	Current Practice
Yes	HVAC Systems that control	Occasionally
	temperature of a space by reheating	
	previously cooled air shall be	
	equipped with controls that	
	automatically adjust the temperature	
	of the cool air supply to the highest	
	temperature that will satisfy the zone	
	requiring the coolest air	

* Heat Recovery Systems

MNECB 1997	MECB 2013	Current Practice
Swimming Pools, Ice Arenas and Curling Rinks	Added: Exhaust/Relief systems with Sensible heat > 150 KW*	No
	HR equipment ≥ 50% efficiency	Incentive driven
	Heat recovered shall be used in Building System	

^{*}Exceptions for certain exhaust gases

- * Heat Recovery Systems
 - * Exhaust Air System Sensible Heat > 150 kW
 - * 2360 L/s at 55°C Temperature Difference
 - * Equivalent to buildings such as:
 - * 50 suite apartment
 - * 20,000 sq ft office

* Heat Recovery Systems

MNECB 1997	MECB 2013	Current Practice
Dwelling Units, principal exhaust, 45% Sensible Heat Recovery Effectiveness	Same	Residential Homes and Condominiums

* Shut-off and Set Back Control

MNECB 1997	MECB 2013	Current Practice
Off hours controls	Yes	Set-back "capable", but
		not necessarily enabled
Space temperature and	Yes	
Outside Air reduction		
Heat pump adaptive	Yes	Best Practice
anticipation		

* Shut-off and Set Back

MNECB 1997	MECB 2013	Current Practice
Air Flow Control Areas shall be divided into < 2500 sq. m	Yes	Varies, large building yes, "spec-build" varies
Limited to one storey	Yes	No
DDC controls required	Yes	Mostly

* Shut-off and Set Back Control - Boilers

MNECB 1997	MECB 2013	Current Practice
Prevent heat loss when	Multiple boilers > 176	Varies, but capability has
not in operation	kW (600 MBH), two	been around for 25 years
	stage or multi-stage	
No	> 352 kW (1200 MBH)	Very little cost premium
	shall be fully modulating	to be added

* Shut-off and Set Back Control

MNECB 1997	MECB 2013	Current Practice
Not in code	Loop temperature reset required	Capable, yes, if properly enabled
	Hot or Chilled water systems > 88 kW (300 MBH)	Doubtful for > 75% of buildings
	Indoor/outdoor controller Load represented by return	_
	water	

ASHRAE

* Unitary/Packaged Equipment

MNECB 1997	MECB 2013	Current Practice
Yes, HVAC Equipment "Performance" Requirements	Enhanced Table	Cross Border shipping complies with Energy Efficiency Act and Regulations*
Minimum performance in EER, COP, IPLV, AFUE, E _c and E _t	Performance required shall not be lower that MECB, EER, or other Provincial Requirements (most stringent applies)	*Timing of EER and NECB publications overlap

- * Unitary/Package Equipment
 - Design practitioners need to be diligent in specifying minimum equipment efficiencies and familiarize themselves the other federal and provincial regulations

MECB 2013 – Part 5 Trade-Off Path

- * Trade-off System Approach
 - * Mechanical systems versus components in isolation
 - * Metered energy to end use
 - * Needed to have research done

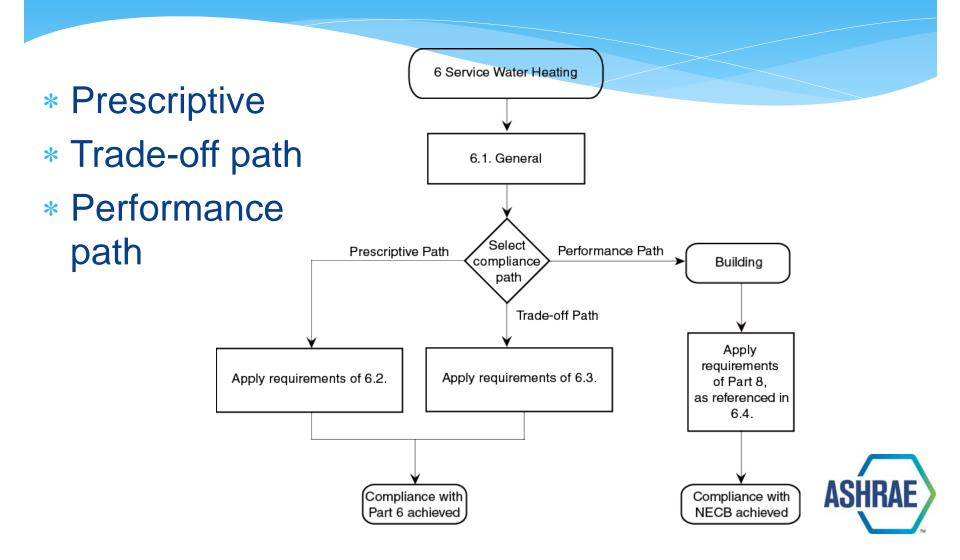
MECB 2013 – Part 5 Trade-Off Path

- * Trade-off System Research
 - * Technosim
 - * 27,000 simulation runs
 - * eQuest curve match
 - * Weighting factors established for components

MECB 2013 – Part 5 Trade-Off Path

HVAC _{TOI}		0.140810
Compliance:		System is NECB Compliant
		HVAC Type ID - #1
System Type:		Built-up variable-volume
Cooling System Type:		Room Air Conditioners and Room Air Conditioner Heat Pumps
Cooling Sub-System Type:		Room air conditioners with reserve cycle with louvered sides < 10.55
		(36000)
Cooling capacity:	W	0 5 11 3
Heating System Type:		Gas-fired boilers, >= 88 kW and < 733 kW
Component	Units	Components Efficiencies
Supply fan mechanical efficiency	%	60.0%
Supply motor efficiency	%	91.7%
Return fan mechanical efficiency	%	38.0%
Return fan motor efficiency	%	80.0%
Supply temperature control	Selection	Constant <= 15°C
Airflow control efficiency	Selection	Forward curve with vanes
Supply fan total static pressure	Pa	996.4
Supply duct insulation	RSI Value	0.6
Return fan total static pressure	Pa	249.1
Heating coil design temperature drop	°C	11.1
Baseboard heater design temperature drop	°C	11.1
Boiler/furnace/heat pump heating efficiency	Fraction	1.000
Chillers/direct expansion system/heat pump cooling efficiency	COP	2.5
Rejection fan input power ratio	W/W	0.051
Cooling by direct use of outdoor air (air economizer)	Selection	Dual DBT
Outdoor airflow control	Selection	Fixed
Exhaust air heat-recovery efficiency	%	0.0%
Cooling by indirect use of outdoor air (water economizer)	%	0.0%
Piping insulation - hot water	RSI Value	0.9
Piping insulation - chilled water	RSI Value	0.9

* Service Water Heating Systems


"Service water means water for plumbing services, excluding systems exclusively for space heating or cooling or for processes"

- * Prescriptive Requirements
 - Heating equipment
 - Piping insulation
 - Controls
 - Hot water discharge flow
- * Trade-off Path

* Equipment Minimum Efficiency Performance

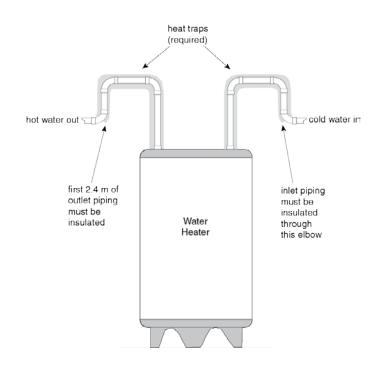
MNECB 1997	MECB 2013	Current Practice
Yes, older	Aligned with Energy	Baselines
regulations and	Efficiency Regulations (EER)	established by EER
performance levels	as of May 2010	for cross border
		sales
	Performance required shall	
	not be lower that MECB,	
	EER, or other Provincial	
	Requirements (most stringent	
	shall apply)	

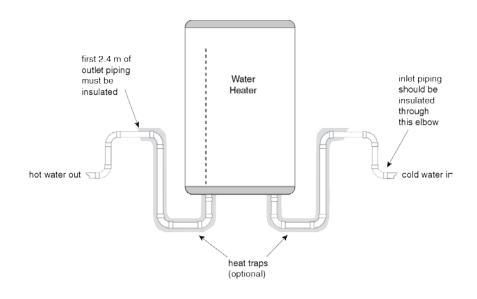
* Equipment Performance – Manitoba Amendments

Water Heaters	Input	Performance Requirement
Gas-fired instantaneous	\geq 14.7 kW and \leq 73.2 kW	EF ≥ 0.8
Gas-fired storage	≤21.98 kW	$EF \ge 0.67 - 0.0005 \text{ V}$
Gas- Fired storage	> 21.98 kW and ≤ 117 kW	$E_t \ge 80\%$

* Equipment Insulation

MNECB 1997	MECB 2013	Current Practice
Yes, storage tanks	Insulation increased	Varies
Less stringent	Combination SWH and Space Heating, where: < 22 kW (75 MBH) < twice SWH load	Not all too common




* Piping Insulation

MNECB 1997	MECB 2013	Current Practice
Hot water circulation systems and Hot water non- circulation systems without heat traps or with heat tracing	No Change	Varies, provincially funded buildings, some MURB's and condominiums
Minimum thickness for conditioned and non-condition spaces	No Change	

* Piping Insulation Clarification

* More than one end use temperature

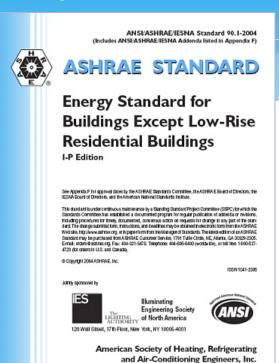
MNECB 1997	MECB 2013	Current Practice
Booster heater required: •More than one end use on system •Design discharge > 60°C •< 50% of design flow	No Change	Not very common

* Hot Service Water

MNECB 1997	MECB 2013	Current Practice
Showers = 9.5 L/min	6.6 L/min (1.45 Igal/min)	Legislated through Manitoba Plumbing Code
Lavatories = 8.3 L/min	5.7 L/min (1.25 Igal/min)	Legislated 2011
Automatic shut off valves for assembly occupancies	Same	Very Common

MECB 2013 – Part 6 Trade-Off Path

- * Trade-off Path Approach
 - * Similar to Part 5 HVAC
 - * Fewer components, but a realistic path to provide trade-offs


MECB 2013 – Part 6 Trade-Off Path

	0.158180
	System is NECB Compliant
	SWH Type ID - #1
	Tank
	Gas-fired > 117 kW ▼
L	60
Units	Component Efficiency
%	98.0%
RSI Value	2.2
RSI Value	0.7
%	80.0%
%	60.0%
W/W	0.0
L/min	8.3
L/min	9.5
L/min	7.6
%	50.0%
%	50.0%
	% RSI Value RSI Value % % W/W L/min L/min L/min %

MECB 2013 – ASHRAE 90.1-2010 Comparison

- * ASHRAE 90.1
 - * Standard for the U.S. since 1975
 - * Sponsored by EPA/DOE
 - * Mandated for all 50 states
 - * Continuous maintenance since 1999

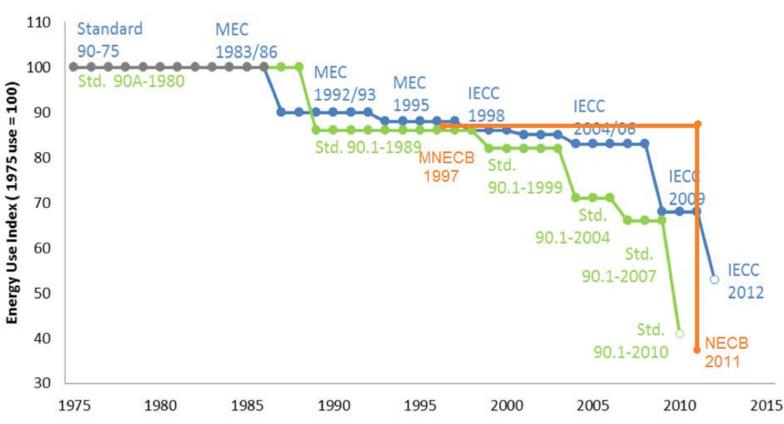
1791 Tullie Circle NE. Atlanta, GA 30329

www.ashrae.org

MECB 2013 – ASHRAE 90.1-2010 Comparison

* HVAC & SWH

- * Vestibule maximum temperature control
- * Exhaust/Relief Energy Recovery, sensible load vs. design O.A. % and climate zone
- * Ice plant heat recovery (NECB)
- * Pipe insulation ASHRAE higher for larger high temperature systems
- * Simple Trade-off Path



MECB 2013 – ASHRAE 90.1-2010 Comparison

- * HVAC & SWH
 - * Air Side Economizer ASHRAE smaller units
 - * Demand Control Ventilation (DCV) mandatory with ASRHAE
 - * Equipment Performance Tables, NECB generally more stringent
 - * Furnaces 78% versus 92.4 AFUE

MECB 2013 – ASHRAE 90.1 Comparison

NECB 2015 and Beyond

- * Future Sensing
 - * Heating Boiler % Efficiency
 - * Commercial Kitchen Ventilation
 - * Energy Recovery Threshold
 - * Point of Use Water Heater Systems
 - * Domestic Water Heat Recovery

NECB 2015 and Beyond

- * Future Sensing
 - * Under Floor Air Distribution (UFAD)
 - * Dedicated Outdoor Air Systems (DOAS)
 - * Energy Use Intensity (EUI) Targets
 - * Air Barriers and Commissioning

NECB Development

- * Challenges
 - * Time requirements
 - * Resources, both technical and administrative
 - * Cost Benefit Analysis
 - * Regional and Political differences
 - * Minimum Code vs. Best Practices

NECB Development

- * Benefits
 - * Made in Canada
 - * Benchmarked to other codes and standards
 - * Ongoing review (continuous maintenance)
 - * Common ground for construction industry
 - * Adoption country wide?

MECB 2013 – Overview

QUESTIONS?

