

Air Flow Measurement Techniques for Exhaust Hoods

Restaurant Air Balance is the Goal

Exhaust Flow is the Challenge!

Airflow measurement at fan

Pitot tube or hot wire traverse in welded duct Recommended by a national balancing association. Drilling holes in liquid tight ductwork can be an issue. Accessing ductwork can be difficult. But results can be accurate!

Hood/filter static pressure measurement

- Can only work for precalibrated hood/filter combinations.
- Also subject to variation due to installation and ability to measure true static pressure.
- No intuitive connection between reading and cfm.
- Investigated by RP-623.

Hood ΔP vs. Exhaust CFM

Hood ΔP vs. Exhaust CFM

RP-623

Velocity measurement at hood face

Velocity measurement at filter face

- This was the focus of RP-623
- 5 hood/filter combinations tested
- Velocity measured using RVAs
- k-factor method applied and validated

4 inch and 2.75 inch RVA

Rotating Vane Anemometer (RVA)

The 4 inch diameter works better for obvious reasons!

Different traversing techniques

Discrete

Horiz. Continuous

Vert. Continuous

Results showed little difference (particularly for 4 inch RVA)

RVA velocity vs. distance from filter

k-factor method:

- Measure "effective" area presenting itself to the flow at the filter face.
- Measure an area-weighted velocity.
- Calculate indicated flow rate: Q_{indicated} (cfm) = Vel (fpm) x A (ft2)
- Correct indicated to actual by: Q_{actual} = Q_{indicated} x (k-factor)

Example:

245 fpm x 2.6 ft2 = 660 cfm (indicated) 245 cfm x 0.75 k-factor = 495 cfm (actual)

K-factor determined by AMCA exhaust flow measurement vs. RVA measurement

K-factor increases with distance

2 inch from filter

Testing Summary: (for 1 hood/filter type - 3 testers)

- Flush with filter face (0 in.)
- 2 inch off filter face (2 in.)
- 0.75 1.07 —

k-factor

Correlates with RP-623 k-factors

RVA tips for airflow at filter face:

- Area for calculation must be the same as the swept or traversed area.
- Distance from filter is critical in selecting k-factor
- Always apply k-factor if using flush traverse.
- Each filter in the hood must be tested.
- Traverse technique is a factor; patience is a virtue!
- 4 inch better than 2.74 inch RVA.
- If 2.75 inch head go across, not with, the slots.
- Spin up the RVA before commencing traverse