Water Heaters

Think of hot water supply as a Svstem

Improving System Efficiency

Heat pump water heaters

estimated to reduce energy consumption in an all-electric house by to 10 to 15% of the energy used by a resistance electric water heater

Standard Efficiency Tank-Type

Standard Efficiency

Pros

- Simple
- Robust
- Low cost
- Industry standard
- Easy to specify
- Easy to fix
- Easy to replace

Cons

- 80\% thermal efficiency
- Standby loss (100 gal): 1000-1300 Btu/h

High Efficiency (Condensing) Tank-Type

High Efficiency

Pros

- Condensing
- 95\% efficiency
- Standby loss: 600 1000 Btu/h
- Potentially lower cost of installation

Cons

- Manage Condensate
- More complex
- Not the standard
- Higher first cost

Natural Gas Fired Appliance Efficiency

Tankless (On Demand)

Tankless

Pros

- Smaller footprint
- Outside installation possible
- Minimal standby loss

Cons

- $80-84 \%$ thermal efficiency
- Minimum water flow limits
- May need multiple units
- Special installation required (stainless steel venting)
- Maintenance may be higher

Limitations

Storage

- Can run out of hot water during heavy usage if undersized

Limitations

Tankless

- Startup sequence creates an additional lag in hot water delivery
- A couple of seconds before it "wakes up"
- 10-30 seconds before its close to set temperature
- Cold water sandwich effect

- Difficulty working with door-type dishwashers and low flow aerators on hand-washing sinks

Limitations

Tankless

- Doesn't work well with recirculation systems w/o expansion of system
- Most heaters are not designed to modulate down to accommodate a 5 to $15^{\circ} \mathrm{F}$ temp rise
- May nullify or shorten manufacturer's warranty
- Making it work requires additional investment

- Plumbing recirculation line to one sacrificial unit in a multi-unit system may be an option

Limitations

Filling a 3-compartment sink

- Faucets flow at 5 to 15 gpm

- Tank-type may fill two 40-gal sinks in 4 minutes
- One standard eff. tankless takes 25 min in winter
- The additional fill time can affect user behavior
- Several $199,000 \mathrm{Btu} / \mathrm{h}$ tankless units are needed to meet demand, each with max flow of 2 to 4 gpm

Tank vs. Tankless

1 condensing tank $=2$ condensing tankless Without recirc system \rightarrow QSR

Tank vs. Tankless in high draw applications

2 tanks = 4 tankless+storage tank+pump+controller

4 Hot Water Heater "Must-Do's"

Insulate all accessible hot water lines.

Turn on the automatic damper control.

Control the recirculation pump: use a timer to turn it off when not needed.

Regulate the tank temperature

 by properly setting the thermostat.

